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1. Introduction 

The optimal climate normal (OCN) method is one of the major tools of seasonal 
climate predictions at the climate prediction center (CPC). With this method, the climate 
prediction for a given season of the next year is essentially given by the average of the 
most recent K years. The K is determined according to the hindcast skill. Such an 
optimally determined number K is usually spatially and seasonally varying (Huang et al. 
1996). In the current operational OCN seasonal temperature forecasts, a constant time 
period K=10 years is used for all locations and all seasons. The major purpose of using 
the constant time period is to make the forecast spatially consistent. However, as a cost of 
that purpose, the prediction skill becomes significantly lower than that using the spatially 
varying time period.  

By analyzing the US climate variability, it is found that most variance (> 85%) of the 
seasonal mean US surface air temperature can be explained by a few empirical 
orthogonal function (EOF) modes. These EOF modes are different not only in their 
spatial pattern, but also in their dominant time scales. This finding has guided us to 
construct an EOF based OCN prediction scheme. With this scheme, the OCN prediction 
is conducted for each EOF component separately and independently, and the predicted 
EOF components are then synthesized to give a prediction for the total anomaly field. 
Since the dominant time scales of different EOF modes are different, so are the optimal 
Ks corresponding to these EOF modes. Therefore, this new OCN scheme can take 
account of multiple time scales of climate variability and meanwhile guarantee the 
forecast to be spatially consistent. The hindcasts for the last 42 years have shown that the 
skill of this new OCN scheme is significantly higher than the current operational one. 
 
2. Data and method 

The data used in this study are the seasonally averaged daily temperature during 
1931-2002 period for 102 United States’ climate divisions. 

With the aid of the EOF analysis, the temperature anomaly of a given season in year n 
and at climate division i  can be expressed as 
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where, Em andα m  are the mth EOF pattern and its associated time coefficient, M is the 
number of EOF modes kept in this study. It turns out that EOF modes with m>6 are 
basically noise, so M=6 should be an appropriate choice. 

Applying OCN prediction method to the mth  EOF component, we have the predicted 
time coefficient  
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where, the K(m) is chosen such that the temporal correlation between the predicted 
coefficients Km,α  and the “observed” coefficients mα in the history reaches its maximum. 
The predicted temperature anomaly thus is given by 
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The temporal correlation and spatially averaged temporal correlation are used as the 
measures of the prediction skill. Conventionally, we define temperature anomalies as the 
departures from the WMO recommended climate (which is the averages over a specified 
30-year period updated at the start of each decade), i.e., $T T Cf f

WMO= −  for prediction 
and $T T Cobs obs

WMO= −  for observation. With these notations, the skill measures can be 
written respectively as  
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Because the first 30-year data need to be reserved for defining the climate, the OCN 
prediction test is only for the period 1961-2002. Likewise, the upper bound of the OCN 
parameter K is set to be 30 years.  
 
3. Results 

The EOF dependency of the OCN parameter K is shown in the Table1, where the K 
numbers for the six leading EOFs are presented for the four seasons. Take the winter 
season (DJF) as an example, the K numbers of the six EOFs are distinctly different. They 
are17 and 23 corresponding to EOF1 and EOF2 respectively, while the others are below 
10. Similar patterns are also found for other seasons. The results indicate that the optimal 
“climate normals” associated with different EOF modes are very different. It is thus 
suggested that dealing with these EOF modes individually in OCN prediction is 
necessary and potentially beneficial.  

The hindcast skill of the EOF based OCN prediction is shown in Figure 1, where the 
temporal correlation between the 9-month lead predictions and the observations over the 
past 42 years are presented for the four seasons.  The same skill map but for the OCN 
prediction with K=10 everywhere is presented in Figure 2. Comparing the two figures, 
one can immediately see the big improvement by the EOF based OCN method. For all 
the seasons the colored area with correlation higher than 0.3 in Figure 1 is much more 
extensive than that in Figure 2.  Not only this, the magnitude of the skill in Figure 1 is 
also significantly higher that in Figure 2. A more quantitative comparison is given in 
Table 2, where the spatially averaged temporal correlation over 102 US climate divisions 
are presented. Obviously, the skill of the EOF based OCN method is higher than that with 



 

 

K=10 for all locations by 0.1 or more for most seasons. The annual average of the former 
is 0.1 higher than the latter.  

Though the skill scores of the two OCN techniques are quite distinct, their 
geographical distribution and seasonal change are very similar.  For example, in both the 
figures the high skill region is in the southeastern states for the winter and the summer, in 
the western states for the spring and in the southern states for the fall. In both cases the 
skill score reaches the highest values in the winter and drops to the lowest in the fall 
(SON). It is found that the spatial variation of the skill score coincides with the variation 
of the fraction of the low frequency climate variability. This is understandable since the 
predictions by the OCN methods are indeed in the low frequency end. 

  
4. Summary 

In this study, it is found that the ability of the OCN method in predicting the United 
States surface temperature can be significantly improved through invoking EOF modes. 
The increase in the annual skill score averaged over the 102 climate divisions is about 0.1 
for the 9-month lead predictions.  This is attributed to the use of multiple time scales of 
climate variability embedded in different EOF modes. 
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Table 1.  The OCN parameter K of the six leading EOFs of the US surface temperatures. 
The numbers are determined based on the hindcast for the period of 1961-2002.  

 EOF 1 EOF 2 EOF 3 EOF 4 EOF 5 EOF 6 
DJF 17 23 4 5 8 2 
MAM 15 12 7 8 5 5 
JJA 18 15 8 9 7 8 
SON 19 15 8 9 8 9 

 
 
 
Table 2.  Spatially averaged temporal correlation between the 1-year lead OCN 
predictions and the observations for the 102 US climate divisions and the period of 1961-
2002. 

 DJF MAM JJA SON ANNUAL MEAN 
EOF Based .36 .33 .26 .15 .28 
K=10 .30 .23 .15 .02 .18 

 
 
 
 



 

 

 
Figure 1. The temporal correlation between the predicted surface temperatures with the 
EOF based OCN and the observations for the period of 1961-2002. 
 

 
Figure 2. The temporal correlation between the predicted surface temperatures with the 
OCN with K=10 over all climate divisions and the observations for the period of 1961-
2002. 


